The Witten index for one-dimensional split-step quantum walks under the non-Fredholm condition
نویسندگان
چکیده
It is recently shown that a split-step quantum walk possesses chiral symmetry, and certain well-defined index can be naturally assigned to it. The Fredholm if only the associated unitary time-evolution operator has spectral gaps at both $+1$ $-1.$ In this paper we extend existing formula for case encompass non-Fredholm (i.e., gapless case). We make use of natural extension case, known as Witten index. aim fully classify by employing shift function rank one perturbation fourth order difference operator. also in take half-integer values case.
منابع مشابه
One-dimensional quantum walks with absorbing boundaries
In this paper we analyze the behavior of quantum random walks. In particular we present several new results for the absorption probabilities in systems with both one and two absorbing walls for the one-dimensional case. We compute these probabilities both by employing generating functions and by use of an eigenfunction approach. The generating function method is used to determine some simple pr...
متن کاملOne-Dimensional Continuous-Time Quantum Walks
We survey the equations of continuous-time quantum walks on simple one-dimensional lattices, which include the finite and infinite lines and the finite cycle, and compare them with the classical continuous-time Markov chains. The focus of our expository article is on analyzing these processes using the Laplace transform on the stochastic recurrences. The resulting time evolution equations, clas...
متن کاملOne-dimensional discrete-time quantum walks on random environments
We consider discrete-time nearest-neighbor quantum walks on random environments in one dimension. Using the method based on a path counting, we present both quenched and annealed weak limit theorems for the quantum walk.
متن کاملUnitary equivalent classes of one-dimensional quantum walks
This study investigates unitary equivalent classes of one-dimensional quantum walks. We prove that one-dimensional quantum walks are unitary equivalent to quantum walks of Ambainis type and that translation-invariant one-dimensional quantum walks are Szegedy walks. We also present a necessary and sufficient condition for a onedimensional quantum walk to be a Szegedy walk.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reviews in Mathematical Physics
سال: 2023
ISSN: ['1793-6659', '0129-055X']
DOI: https://doi.org/10.1142/s0129055x23500101